227. The Moments of Coumarin and its 3-Phenyl Derivative and of Certain Substituted γ-Pyrones.

By C. G. Le Fèvre and R. J. W. Le Fèvre.

The dipole moments of a number of substances related to α - and γ-pyrones are now recorded. The only previous measurements in this class were made by Hunter and Partington (J., 1933, 87), who reported a slightly lower moment for dimethylpyrone than that now found by us. Recently, however, Govinda Rau (Proc. Indian Acad. Sci., 1936, A, 4, 687) has published data for both this compound and coumarin, which we also had under investigation. His observations and ours are in substantial agreement in both cases.

A table of the present and past results is given below beneath the customary headings :

	Substance.	${ }_{\mathrm{E}} P+{ }_{\mathrm{c}, \mathrm{~A}} P$ c.c.	$\underset{\mathrm{c}, \mathrm{c},}{ } P$	Temp.	$\mu . *$	Authors.
I.	Coumarin	42	457	25°	$4 \cdot 4{ }_{8}$	Le F. \& Le F.
		48.5	$477 \cdot 6$	20	$4 \cdot 51$	G. R.
II.	3-Phenylcoumarin	69	451	25	$4 \cdot 3{ }_{0}$	Le F. \& Le F.
III.	2:6-Dimethyl- γ-pyrone	34.	480	25	$4 \cdot 6{ }_{5}$	
		35	385	20	$4 \cdot 0{ }_{5}$	H. \& P.
		36	$459 \cdot 1$	20	4.48	G. R.
IV.	3: 5-Diacetyl-2 : 6-dimethyl- γ-pyrone	53	394	25	$4 \cdot 0{ }_{6}$	Le F. \& Le F.
V.	2: 6-Diphenyl-3:5-dimethyltetra-hydro- γ-pyrone	84	151	25	$1.8{ }_{0}$,",
VI.	Dehydracetic acid	44	210	25	$2 \cdot 83$	
VII.	2 2: 6-Diphenyl- γ-pyrone	72	380	20	$3 \cdot 8{ }^{2}$	H. \& P.
VIII.	Xanthone	57	257	25	3.1 ${ }_{1}$	Le F. \& Le F. \dagger
		60	$240 \cdot 9$	20	$2 \cdot 93$	G. R.

* Moments, here and throughout, are expressed in Debye units.
\dagger This vol., p. 196.
Coumarin and 3-Phenylcoumarin.-The two chief moments in these molecules are those of the ${ }_{C}{ }^{\circ}$ and the $\mathrm{C}=\mathrm{O}$ units. These (1 and 2.3 respectively) interact at $c a .60^{\circ}$ and should, therefore, produce a resultant of about $2 \cdot 9$ roughly 17° anticlockwise to the axis of the carbonyl group in (I). Actually, however, the observed moments are considerably higher. This difference can very largely be attributed to intramolecular electrostatic induction, an estimation of which for the two compounds has been made by the method described by us (this vol., p. 196). For (I) we have adopted a model (see I) with the following specification: Bonds $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EF}, \mathrm{KM}, \mathrm{ME}$, and FA, $1.42 \mathrm{~A} . ; \mathrm{FG}$,
(I.)

1.49 A. (cf. phthalocyanine, Robertson and Woodward, this vol., p. 219; diphenyl, Clark and Pickett, J. Amer. Chem. Soc., 1931, 53, 167, 3820) ; GH and KN, 1.32 A. (cf. benzoquinone, Proc. Roy. Soc., 1934, 146, 106, 473 ; Nature, 1934, 134, 138); HK, 1.5 A. The points of action of the principal dipoles were taken to be the mid-points between the centres of the carbon and oxygen atoms in each case, the values being $1.01,1.01$, and 2.3 units for μ_{1}, μ_{2}, and μ_{3} respectively, directed along the interatomic links as indicated on the diagram. The polarisabilities at the various atomic centres are stated in our previous paper. In the present case, however, EM and KN being only $1 \frac{1}{2}^{\circ}$ from parallel, the calculations were simplified by ignoring this slight divergence and regarding the directions of μ_{1} and μ_{3} as identical.

The equations used are those of Smallwood and Herzfeld (J. Amer. Chem. Soc., 1930, 52, 1919) giving the horizontal and the vertical component (μ_{x} and μ_{y}) of the induced doublet produced in a particle of polarisability α situated r length units away from the primary
dipole whose direction makes an angle θ with r. The $\Sigma \mu_{x+y}$ values so calculated were reduced by the factor $(\varepsilon+2) / 3 \varepsilon$ as suggested by Frank (Proc. Roy. Soc., 1935, A, 152, 188), ε being taken as $2 \cdot 4$ (Le Fèvre and Le Fèvre, loc. cit.). The results are tabulated :

Coumarin.
From $\mu_{1}\left\{\begin{array}{l}\Sigma \mu_{x}=+0.50 \\ \Sigma \mu_{y}=-0.42\end{array} \quad\right.$ From $\mu_{2}\left\{\begin{array}{l}\Sigma \mu_{x}=+0.27 \\ \Sigma \mu_{y}=+0.75\end{array} \quad\right.$ From $\mu_{3}\left\{\begin{array}{l}\Sigma \mu_{x}=+0.95 \\ \Sigma \mu_{y}=+0.43\end{array}\right.$
(A negative sign shows that the induced acts against the primary dipole.)
Resolution by graphical methods of the three primary and six induced component moments gave a resultant of 4.05 units acting along a direction inclined anticlockwise 15° to the axis of the $\mathrm{C}=\mathrm{O}$ group and with its negative end pointing away from the molecule.

Similar treatment for 3 -phenylcoumarin [on the basis of a model derived from (I) with the $\mathrm{C}-\mathrm{C}$ link from H to the carbon of the substituent group 1.49 A., and with the remaining carbons separated by the normal aromatic internuclear distances] shows that at the centre of the 3 -phenyl ring the total induced moments from μ_{1}, μ_{2}, and μ_{3} amount to $c a .-0.2$ to -0.3 and act parallel to the $\mathrm{C} 二 \mathrm{O}$ axis (α has been taken as 0.9×10^{-23} c.c., i.e., the mean α for the breadth and thickness of benzene as given by Stuart and Volkmann, Ann. Physik, 1933, 18, 121). This is in good agreement with experiment, by which the moment of phenylcoumarin is found to be less than that of its parent by approximately this amount.

In both cases the observed moment exceeds that calculated by about 0.5 unit. Following Sutton (Trans. Faraday Soc., 1934, 30, 793), this increase can be attributed to resonance between the normal molecule (I) and excited states [the chief being probably ($\mathrm{I} a$), which corresponds to a formula proposed by Clayton (J., 1908, 93, 524)], or, using other descriptions of the same phenomenon, to mesomerism (Ingold, J., 1933, 1120), or the existence of "Zwischenstufen" (Arndt and co-workers, Ber., 1930, 63, 587, 2963). (It should be noted, however, that the idea of permanent valency displacements occurring by the mechanism of the tautomeric effect was clearly expressed by Ingold, Ann. Reports, 1926, 23, 134, 149.)

The γ-Pyrone Derivatives.-The induction occurring in the two $2: 6$-disubstituted- γ pyrones has also been estimated, by using the appropriate dimensions listed above, but the resultant moments so calculated are several units below those found by direct measurement. It is clear, therefore, that, even more definitely than xanthone, these molecules in their real states are mesomerides between the ketonic and betaine forms: $\mathrm{O}=\mathrm{C}<\mathrm{C}_{\mathrm{C}}=\mathrm{C}>0$ and ${ }^{\oplus}\left[\mathrm{O}-\mathrm{C}<{ }_{\mathrm{C}}^{\mathrm{C}} \mathrm{C}-\mathrm{C}>\mathrm{C}>\right]^{\oplus}$. Compound (V) is notable in this connection in that, owing to the absence of conjugation between the ethereal oxygen and the carbonyl group, mesomeric effects are absent and the observed moment is of the low order to be expected if the real state were practically as formulated.

The moment found for dehydracetic acid is in agreement with structure (VI) (cf. Adams and Rassweiler, J. Amer. Chem. Soc., 1924, 46, 2758) if the 3 -acetyl group is restricted in its rotation (about the bond joining it to carbon atom no. 3) to the plane dividing the molecule perpendicularly through the carbon atoms 3 and 6 .

Measurements.-These were made at 25° and approximately 1200 kc . The columns contain the following data respectively: (1) the weight fraction of the solutes in the solutions, (2) the dielectric constants of the solutions, (3) their densities, (4) their specific polarisations, (6) their refractive indexes, (7) their specific refractions, and (5) and (8) the

1090 The Radioactivity of Potassium prepared from Animal Tissue.
molecular polarisations and refractions of the solutes. The formula of Sugden (Trans. Faraday Soc., 1933, 30, 720) has been used in the calculations.

$\begin{gathered} w_{1} \times \underset{0}{ } \times . \\ 0 \end{gathered}$	$\begin{gathered} \epsilon_{25^{100}}^{120 .} \\ 2 \cdot 2725 \end{gathered}$	$\begin{gathered} d_{4^{\circ} 5^{\circ}} . \\ 0.87378 \end{gathered}$	$\begin{gathered} P_{12} . \\ 0.34086 \end{gathered}$	P_{1}	$\begin{gathered} n_{D}^{25^{\circ}} . \\ 1.49724 \end{gathered}$	$\begin{gathered} \gamma_{12} \cdot \\ 0.33503 \end{gathered}$	$\left[R_{\boldsymbol{L}}\right]_{\text {d }}$.
Coumarin; $\mathrm{M}=146 \cdot 1$.							
11,670	$2 \cdot 4546$	0.87698	$0 \cdot 37236$	$444 \cdot 2$	1.49835	0.33436	$41 \cdot 6$
16,260	$2 \cdot 5305$	0.87830	0.38464	$443 \cdot 2$	1.49885	$0 \cdot 33422$	$41 \cdot 7$
25,039	$2 \cdot 6747$	$0 \cdot 88070$	$0 \cdot 40677$	434.4	$1 \cdot 49979$	0.33384	$42 \cdot 0$
3-Phenylcoumarin; $\mathrm{M}=222 \cdot 2$.							
6,044•8	2.3291	0.87552	$0 \cdot 35067$	436.3	1.49808	0.33484	(67.5)
8,815.2	$2 \cdot 3538$	0.87629	$0 \cdot 35485$	428.4	1.49857	$0 \cdot 33483$	$69 \cdot 4$
11,463.5	$2 \cdot 3765$	$0 \cdot 87690$	$0 \cdot 35868$	421.1	1.49887	$0 \cdot 33476$	$69 \cdot 2$
2:6-Dimethyl- γ-pyrone; $\mathrm{M}=124 \cdot 1$.							
2,838•1	$2 \cdot 3270$	0.87436	0.35075	$474 \cdot 8$	1.49731	$0 \cdot 33485$	$33 \cdot 7$
3,763.5	$2 \cdot 3437$	0.87451	$0 \cdot 35373$	466.7	1.49731	$0 \cdot 33479$	$33 \cdot 7$
5,933•8	$2 \cdot 3853$	0.87495	$0 \cdot 36104$	$464 \cdot 4$	$1 \cdot 49739$	$0 \cdot 33467$	$34 \cdot 0$
8,213•3	$2 \cdot 4263$	$0 \cdot 87546$	$0 \cdot 36807$	$453 \cdot 4$	$1 \cdot 49751$	$0 \cdot 33454$	$34 \cdot 2$
3:5-Diacetyl-2 : 6-dimethyl- γ-pyrone; $\mathrm{M}=208.2$.							
2,102•1	$2 \cdot 2910$	$0 \cdot 87430$	$0 \cdot 34412$	$393 \cdot 8$	-	-	
2,712.0	$2 \cdot 2962$	$0 \cdot 87446$	$0 \cdot 34502$	$390 \cdot 3$	1.49726	$0 \cdot 33478$	(50.6)
5,969•9	$2 \cdot 3248$	0.87522	$0 \cdot 35000$	$389 \cdot 7$	$1 \cdot 49737$	$0 \cdot 33455$	53.0
6,054•9	$2 \cdot 3254$	$0 \cdot 87525$	$0 \cdot 35010$	388.7	$1 \cdot 49739$	$0 \cdot 33455$	$53 \cdot 2$
2: 6-Diphenyl-3: 5-dimethyltetrahydro- γ-pyrone; $\mathrm{M}=280 \cdot 3$.							
6,403•1	$2 \cdot 2818$	0.87503	0.34211	$150 \cdot 3$	1.49773	0.33483	$85 \cdot 1$
9,927•6	$2 \cdot 2870$	0.87572	$0 \cdot 34282$	$150 \cdot 3$	1.49791	$0 \cdot 33467$	$83 \cdot 7$
18,832	$2 \cdot 2992$	$0 \cdot 87742$	$0 \cdot 34441$	$149 \cdot 7$	$1 \cdot 49842$	$0 \cdot 33431$	$83 \cdot 2$
Dehydracetic acid; $\mathrm{M}=168.1$.							
1,110.4	$2 \cdot 2785$	0.87410	0.34186	208.7	1.49731	$0 \cdot 33495$	$44 \cdot 2$
1,601•1	$2 \cdot 2811$	0.87424	$0 \cdot 34229$	207.4	-	-	-
2,620 8	$2 \cdot 2865$	$0 \cdot 87452$	$0 \cdot 34319$	$206 \cdot 7$	1.49742	$0 \cdot 33485$	$44 \cdot 8$
4,484•7	$2 \cdot 2962$	0.87504	$0 \cdot 34479$	$204 \cdot 6$	$1 \cdot 49744$	$0 \cdot 33466$	$42 \cdot 5$

University College (University of London).
[Received, May 13th, 1937.]

